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Abstract. Fuzzy multiobjective decision making models generally rely on the aggregation of the
objectives to form a decision function. The generalized averaging operator is usually adopted for ag-
gregating multiple and unequal objectives because it allows trade-off amongst the objectives, and has
been shown to be suitable to model human decision making behavior. In the field of water resource
management, most of the decision-making problems involving the generalized averaging operator
implicitly assume the decision maker (DM) is rather optimistic. The analysis of the DM’s behavior
during the aggregation process and its impact on the performance of the system, has therefore never
been addressed by many researchers and decision makers. The aim of this paper is to investigate
the relationship between decision makers’ index of optimism and the long-term performance of a
reservoir resource. More specifically, the generalized averaging operator, whose parameter can be
interpreted as the DM’s index of optimism, is imbedded into a fuzzy stochastic dynamic program
(FSDP). This approach is developed and implemented to derive optimal operating policies for the
hydroelectric complex of the Uruguay River basin in Southern Brazil. FSDP-derived policies with
different indices of optimism are then compared with simulation. We show that system performance
may be influenced by the decision maker’s behavior during the aggregation, and that the optimistic
assumption may not yield to satisfactory results, especially during critical time periods.

Key words: flexible mathematical programming, fuzzy set, multiobjective decision-making, reser-
voir operation

1. Introduction

Hydroelectric reservoir operation involves stochastic input (the natural inflows),
nonlinear system dynamics (the release decision depends on the product of the re-
lease and the storage level), feedbacks (immediate and future consequences are in-
terdependent), and imprecise secondary operating objectives (environmental con-
sideration, flood control, etc.). Dynamic programming (DP) is an optimization
approach that is well suited to hydropower systems. Stochastic DP (SDP) formu-
lations are traditionally adopted to deal with the stochastic nature of the inflows.
Yeh (1985) provides a state-of-the-art review of the applications of DP and SDP in
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reservoir optimization problems. Example of applications of explicit SDP models
can be found in Stedinger et al. (1984), Kelman et al. (1990), Tejada-Guibert et al.
(1993). An SDP formulation is used by Pereira (1989) to derive optimal operating
strategies of Brazil’s hydrothermal system. In the SDP model, release decisions are
given in each time period as a function of both the storage level at the beginning
of the time period, and the hydrologic state variable(s). It also provides a cost-to-
go function, which represents the value of the system over some period given the
system’s status, i.e. the volume in storage and the hydrologic condition.

Traditionally, SDP models rely on the use of a penalty function that represents
the economic losses incurred from deviations from release and/or storage targets. In
particular, when dealing with hydroelectric reservoirs, the flood control objective
is usually apprehended by penalizing revenues from energy generation when the
operation leads to unsafe storage level and/or release. The main issue associated
with the use of penalties comes from the fact that they are arbitrarily selected
by the reservoir operators, and therefore are highly subjective (Teegavarapu and
Simonovic, 1999). As a matter of fact, the shape of the penalty function is often
imposed by the decision makers (DM) to reflect a policy designed deliberately
to achieve specific results (Datta and Burges, 1984). This management practice
is now subject to critics, mainly because it fails to efficiently recognize multiple
objectives, and suffers from a lack of transparency and participation since it only
involves few stakeholders. Yet, sustainable management of water resources recom-
mends that particular attention be paid to these issues (Hjorth et al., 1998; Loucks
2000; Nicklow, 2000).

The fuzzy SDP (FSDP) approach proposed by Tilmant et al. (2001) addresses
these issues by providing a multiparticipatory framework in which both qualitative
and quantitative objectives can be considered. For example, the efficient production
of hydroelectricity and the creation of adequate flood control space are handled
through the concept of fuzzy sets. The motivation for using fuzzy sets is two-
fold. First, from a theoretical point-of-view, it allows us to exploit the theory of
fuzzy sets and fuzzy logic to deal with the imprecision (vagueness) that charac-
terizes many components of the decision-making process in the water resources
area. Secondly, from a practical point-of-view, this approach does not require the
implementation of controversial economic valuation techniques, such as the contin-
gent valuation method, to monetize intangibles (Shabman and Stephenson, 2000).
Rather, the FSDP approach relies on surveys of water users and managers to cap-
ture their preferences and expectation with respect to certain objectives, whether
they are classic economic ones such as hydropower generation, or inherently vague
ones such as the minimum flow requirement for maintaining suitable fish habitat.
In the FSDP approach, the solution of the decision making problem still relies on
the Bellman and Zadeh’s framework, which consists in determining the alternative
that satisfies the fuzzy constraint C while attaining the fuzzy goal G (Bellman
and Zadeh, 1970). The current operating objectives are thus considered as flexible
constraints, i.e. constraints that can be partially satisfied (Dubois and Fortemps,



EFFECT OF AVERAGING OPERATORS IN FUZZY OPTIMIZATION OF RESERVOIR OPERATION 3

1999), while the fuzzy goal is obtained from the maximizing decisions calculated
at the previous stage. The fuzzy goal obviously reflects the future consequences
associated with a current decision, whereas the flexible constraints represent the
immediate satisfaction of that decision.

When the decision maker is able to provide the relative importance of the future
consequences and its evolution as a function of the time of the year, the aggreg-
ation of all objectives, i.e. the flexible constraints and the goal, can be achieved
by a weighted sum. The fact that Yager’s power raising method (Yager, 1978) is
essentially pessimistic – the decision function is dominated by the less satisfied
objectives – makes it inappropriate to form the decision function in an infinite-
horizon FSDP algorithm. As matter of fact, the lack of compensation induced by
the max-min formulation (or eventually the max-product formulation) implies that
the FSDP algorithm might not converge. Other studies reported in the literature
aggregate the objectives using a weighted sum, whose weighting coefficients are
usually assigned by the decision maker or calculated, for example, by Saaty’s
method of pairwise comparisons (Saaty, 1980). See for example Bellman and Za-
deh (1970) and Kacprzyk (1997). Only the flexible constraints are aggregated by
a weighted sum by Fontane et al. (1997) and Tilmant et al. (2001). All of the
reported studies implicitly assume that the aggregation is rather optimistic, i.e. the
role played by the largest membership grades is more important than that of the
smaller membership grades. As this paper demonstrates, this assumption may not
yield to the best system performance. Careful attention should therefore be paid
when aggregating unequal objectives with a weighted function to solve multistage
decision-making problems with DP-based algorithms.

To illustrate this, a continuous FSDP model is developed and implemented to
derive optimal operating policies for the Machadinho-Ita hydropower system in
the Uruguay River basin in Brazil. Brazilian reservoirs are operated at the national
scale by an independent coordinating agency. Machadinho and Ita reservoirs are
used to illustrate the methodology and the influence of the rest of the Brazilian sys-
tem is ignored. Rather, we assume that decision maker’s preferences with regards to
appropriate storage levels are available and can be represented by fuzzy sets. These
fuzzy sets constitute flexible constraints that affect the operation of the reservoirs
in conjunction with both hydropower generation and the future operations. This
paper is organized as follows. Flexible stochastic dynamic programming (FSDP)
and the reservoir operation problem are discussed first. Then, the most common
techniques for including unequal objectives are presented. The application of the
FSDP algorithm to the case study and the optimization results are discussed next.
Finally, a summary and concluding remarks are given.
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2. Flexible Stochastic Dynamic Programming

The optimal operation of a multipurpose reservoir is a multiobjective multistage
optimization problem whose dynamics is described by the continuity equation of
that reservoir:

St+1 = St + Qt − Rt − et (1)

where t is the index of time period; St is the volume in storage at the beginning of
period t; Qt is the total inflow to the reservoir during time period t; Rt is the release
decision during period t, and et are the evaporation losses during period t.

In classical optimization approaches, the performance of the reservoir resource
is usually described through a benefit or loss function, which expresses the eco-
nomic gains or losses associated with a release decision. Although useful, these
approaches present limitations when non-economic objectives have to be taken
into account. For example, water resources projects have an impact on a vari-
ety of economic, political, social and environmental objectives, whose conversion
to monetary terms is still a matter of debate amongst economists (Shabman and
Stephenson, 2000). In the FSDP algorithm, the performance of the reservoir is
evaluated by K unequal objectives Ot = {O1,t , O2,t , . . . , OK,t}, which reflect
the various concerns such as the degrees to which current and future operating
objectives (services) are satisfied or affected by the current release decision Rt .
These services are expressed here through linguistic variables and mathematically
represented by fuzzy sets, whose membership functions are derived from surveys
of water users and managers.

In the FSDP algorithm, the first K-1 services may typically include the imme-
diate consequences associated with hydropower generation, irrigation, navigation,
recreation, environmental considerations, etc., while the Kth objective ensure con-
tinuing satisfactory operation, therefore representing the future consequences of
the release decision. Let µoi,t (St , Qt , Rt ) ∈ [0, 1] be the satisfaction degree of
objective Oi,t by the alternative (St, Qt , Rt ). Assume ωi,t is a non-negative number
indicative of the relative importance of the objective Oi,t during time period t.
Assume f a function for including the relative importance of each objective. Then,
at stage n (time t), the evaluation vector Ot ∈ R

K×1 is:

Ot = [µeff

O1,t (.)µ
eff

O2,t (.) . . . µ
eff

OK ,t (.)]τ

where µ
eff

Oi,t
= f (µOi,t (.)ωi,t ) is the effective satisfaction of objective Oi,t during

period t, and τ is the transpose operation.
The fuzzy decision set Dt results from the aggregation


 : [0, 1] × [0, 1] × . . . × [0, 1]︸ ︷︷ ︸
K times

→ [0, 1] of the K objectives Oi,t , i = 1, 2, . . . ,

K. This aggregation corresponds to some operation on K fuzzy sets, and more
specifically on the K membership functions µ

eff

Oi ,t
(.). As mentioned earlier, the

interpretation of the aggregation is generally left to the decision maker, and can
therefore be tailored to the decision-making problem.
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Recall that the classical reservoir operation problem is often defined as the de-
termination of a sequence of T release decisions such that the expected economic
value of the system is maximized. In a fuzzy environment, the expected effective
satisfaction associated with the operation of the system is the performance indicator
that guides the multistage decision-making process:

E
[
µD1(S1, Q1, R1)
µD2(S2, Q2, R2)
 . . . 
µDT

(ST , QT , RT )
]

(2)

with

µDt
(.) = µ

eff

O1,t (.)
µ
eff

O2,t (.)
 . . . 
µ
eff

OK ,t (.)(St+1) t = 1, 2 . . . .T

µ
eff

OK ,T (ST +1) = f (µG(ST +1), ωK,T )

where µG(ST +1) is a specified fuzzy goal at termination time T, and 
 can be any
suitable aggregation operator.

The recursive solution of the fuzzy DP (FDP) equation can be used to solve the
fuzzy multistage decision-making problem (2)

µ∗
Gn

(St ) = EQt

[∨
Rt

{
µ

eff

O1,t (St , Qt , Rt)
µ
eff

O2,t (St , Qt , Rt)
 . . . 
µ
eff

OK ,t (St+1)
}]
(3)

with µ
eff

OK ,t (St+1) = f (µ∗
Gn−1

(St+1), ωK,t ) where n = number of stages remaining
until the end of the planning horizon; t = index of period; St = storage at the
beginning of period t; Qt = inflow during period t; Rt = release during period t;
µ∗

Gn
(St) = expected membership grade from the optimal operation of the system

from the current period t to the end of the planning horizon given that the system’s
status in period t is St ; µ

eff

Oi ,t
(St+1) = effective membership grade of the ith objective;

E = expectation operator; 
 = aggregation operator; ∨ = maximum operator.
As in classical DP, the functional FDP equation can be extended so as to incor-

porate the temporal persistence of the hydrologic conditions through the use of a
hydrologic state variable Ht (Figure 1). The optimal operating policy can therefore
be found by the recursive solution of a general fuzzy stochastic dynamic program
(FSDP):

µ∗
Gn

(St , Ht) = EQt |Ht
[
∨
Rt

{µeff

O1,t (St , Qt, Rt )
µ
eff

O2,t (St , Qt , Rt)
 . . .

µ
eff

OK−1,t (St , Qt, Rt )
EHt+1 |Qtµ
eff

OK ,t (St+1, Ht+1)}] (4)

subject to

max [Rmin, St + Qt − Smax] ≤ Rt ≤ min [Rmax, St + Qt − Smin]
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Figure 1. Reservoir Operation in a Stochastic and Fuzzy Environment.

where
Ht hydrologic state in period t;

µ∗
Gn

(St , Ht ) expected membership grade from the optimal operation of
the system from the current period t to the end of the plan-
ning horizon given that the system’s status in period t is (St ,
it Ht );

µ
eff

OK ,t (St+1, Ht+1) membership grade of the Kth objective = fuzzy goal† = effect-
ive satisfaction degree associated with the optimal operation
of the system from the next period t+1 to the end of the plan-
ning horizon given that the system’s status in period t+1 is
(St+1, Ht+1) = f (µ∗

Gn−1
(St+1, Ht+1), ωK,t )

µ
eff

O1,t (St , Qt , Rt) membership grade of the ith objective = ith flexible constraint
= effective satisfaction of objective Oi,t during period t given
the alternative (St, Qt , Rt );

An important issue associated with discrete DP-based algorithms is the com-
putational challenge posed by the solution of the functional DP equation for mul-
tidimensional problems. This phenomenon is popularly known as the ‘curse of
dimensionality’. Consider, for example, a classical DP problem with D state vari-
ables (dimensions), and where each variable is represented by a vector of N points.
Then the grid would contain ND points. At each stage, the functional DP equation
is evaluated at each grid point so that the computational effort is proportional to ND

and to the work W(P, D) required to solve the optimization problem, where P is the
dimension of the decision vector. In fuzzy DP, the work W also depends on the se-
lected aggregation operator 
. If the most common aggregation operators, such as

† In this study, we use the term objective to include both the goal and the constraints
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the min, the max, the product, the sum, are not computationally demanding, others
may become prohibitive and seriously limit the applicability of the technique. The
numerical efficiency is therefore one of the criteria for selecting the aggregation
operator (Zimmermann, 1991).

3. Aggregation of Unequal Objectives in FSDP

Several functions for including weight factors in conjunction with different ag-
gregation operators are available in the literature to derive suitable decision func-
tions. Yager (1978) combines the product and min-operators (∧) with power of
importance. The decision function becomes:

Dt(.) =
K∏

i=1

{µOi,t (.)}ωi,t (5)

or

Dt(.) =
K∧

i=1

{µOi,t (.)}ωi,t (6)

The rationale behind Yager’s approach is that when a weight factor is large, the ef-
fective membership grade becomes smaller, and therefore increases its importance
in the min or in the product operations. Nevertheless, as pointed out by Kaymak
and van Nauta Lemke (1998), this approach is suitable for pessimistic decision
maker only.

Another common method for including relative importance to form a suitable
decision function is the weighted function in which the satisfaction degrees µOi,t (.)

are directly multiplied by their weighting coefficients ωi,t :

Dt(.) =
K∑

i=1

ωi,tµOi,t (.) (7)

with
K∑

i=1

ωi,t = 1

This weighted function has been adopted in many studies. See for example Font-
ane et al. (1997), Tilmant et al. (2001), Kacprzyk (1997), Esogbue and Kacprzyk
(1998). If all of these studies use the weighted sum to aggregate unequal objectives,
they pay little attention to the other properties of this operator. For example, (7) is
known for leading to too optimistic results (Kaymak and van Nauta Lemke, 1998),
which makes it suitable to model optimistic decision makers, i.e. decision makers
that selects risky solutions. The same authors also discuss the conditions to be met
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for introducing weighting coefficients into the decision function, and conclude that
the following general weighted function is a suitable decision function:

Dt(.) =
[

K∑
i=1

ωi,tµOi,t (.)
s

]1/s

, s ∈ R \ {0} (8)

Dt(.) =
K∏

i=1

µOi,t (.)
ωi,t , s = 0 (9)

The value of the parameter s, also called the optimism index, can be modified to
adjust the meaning of the aggregation. For positive value of s, the influence of the
objectives that are best satisfied (high membership grade) increases in the decision
function. For negative value of s, the decision function is more determined by the
objectives that are less satisfied (low membership grade), and the decision-making
becomes pessimistic. In most of the reported studies, the meaning of the parameter
s is not discussed nor investigated and is systematically set equal to one. In this
paper, we demonstrate that this systematic assumption may not be appropriate to
solve decision-making problems, and water resource-based problems in particular.
We illustrate this with a multireservoir system whose main objectives are the pro-
duction of electricity and flood control. The reservoir operation problem is solved
by an FSDP algorithm based on equation (4) and on the aggregation functions
(8)–(9):

µ∗
Gn

(St , Ht) = EQt |Ht


∨

Rt

{
K−1∑
i=1

ωi,tµoi ,t (St , Qt , Rt)
s+

ωK,t (EHt+1|Ht ,Qt
µ∗

Gn−1
(St+1, Ht+1))

s

}1/s

 (10)

FSDP-derived policies are then used to simulate the system using historical flows
records. Simulation results are further compared to examine the influence of the
s parameter on the performance of the system. We show that the conventional
optimistic behavior (s = 1) may not yield the best system performance, especially
with regards to the secondary objective. More specifically, the optimistic behavior
tends to favor aggressive release policies, therefore increasing the risk of future re-
strictions during the low flow season. A best compromise solution between energy
generation and the need to ensure continuing satisfactory operation can be achieved
with slightly more pessimistic decision-making.
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Figure 2. Location of the Uruguay River Basin.

Table I. Key features of Machadinho and Ita Dams

Characteristics Machadinho Ita

Drainage Area [km2] 32050 44500

Storage Capacity [109 m3] 3.34 5.10

Usable Storage Capacity [109m3] 1.04 0.79

Normal Head [m] 105.2 104.9

Plant Capability [MW] 1140 1450

Max. Release [m3/s] 1305 1590

4. The Hydroelectric Complex of the Uruguay River Basin

4.1. GENERAL FEATURES

The Uruguay River drains a basin of approximately 73000 km2 located in the
Southern Brazilian Highlands, at the border between Rio Grande do Sul and Santa
Catarina States. It runs from East to West for around 850 km, till the Argentinean
border (Figure 2). The basin area is essentially an agricultural region with a coastal
mountain chain, called the ‘Serra do Mar’, in its upstream part.

The early studies of the hydroelectric development of the Uruguay River basin
date from the Brazilian Hydro-energetic Inventory Studies of the late 60ies. The hy-
droelectric development scheme consists of a cascade of reservoirs from elevation
940 m to elevation 165 m, with an expected potential of 9700 MW. In the upstream
part of the river basin, the projects that are under construction or constructed are
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Figure 3. Schematic Representation of the Machadinho-Ita System (MIS).

the Machadinho hydropower plant on the Pelotas river, and the Ita hydropower
plant on the Uruguay river, downstream of the confluence between the Pelotas and
Do Peixe rivers. Key features of both reservoirs are given in Table I. Because of
the conjunction of a severe financial crisis faced by the Brazilian State in the early
90ies and the growing demand for energy, both projects were carried out with the
financial and the technical resources of private companies.

Both reservoirs will be connected to the Brazilian electrical system, which is
characterized by a substantial percentage of hydro generation (more than 95% of
the installed capacity). Details on the optimal operation of the Brazilian hydro-
thermal system are found in Pereira (1989), Pereira (1998), and Cepel (1999).

4.2. HYDROLOGIC CHARACTERISTICS

The Machadinho-Ita hydroelectric system consists of two hydropower dams loc-
ated along the Uruguay River. Two natural inflows enter the system: one major
inflow Q to the Machadinho reservoir, and one lateral inflow QU . At any time, the
total inflow to Ita reservoir is thus the sum of the side inflow QU , the release R and
spill L from Machadinho. This system is pictured in Figure 3.

Historical monthly inflow records from 1931 to 1994 are used to derive the
stochastic properties of the hydrologic input. Because the major inflow Q and
the lateral inflow QU are strongly correlated (ρQ,QU

= 0.93, where ρ is the cor-
relation coefficient), the statistical analysis is carried out on the major inflows
only. Chi-square goodness of fit as well as graphic tests reveal that each monthly
inflow can be considered as a random variable with log-normal distribution. An-
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other important assumption is made: the generating process is assumed periodically
stationary.

5. FSDP Model of the Machadinho-Ita System (MIS)

Machadinho and Ita hydropower plants are the first major units of the hydroelectric
development of the Uruguay River basin. The production of energy is therefore the
main operating objective with an installed capacity of 2600 MW. Flood control
is an important secondary objective, especially during the high flow season, from
May to October. An adequate flood control strategy should yield flood mitigation
without significantly affecting revenues from hydropower generation. Although
important from a political point-of-view, maintaining minimum release for en-
vironmental and sanitation considerations does not constitute here a restricting
constraint, and is therefore not taken into account in the optimization process. The
operating constraints are thus limited to two: hydroelectric production and flood
control.

Hydropower production and flood control are two conflicting services since
flood control requires free volume in the reservoir, whereas hydropower generation
is directly proportional to the storage level. Another practical issue comes from the
fact that flood damage-discharge curves are extremely difficult to establish due to
the lack of data, and the inherent imprecision associated with the estimation of
flood damages (Bárdossy et al., 1991). The vagueness of the flood control object-
ive, as well as the fact that trade-offs between conflicting objectives have to be
found, make the use of a flexible optimization technique attractive for solving the
reservoir operation problem.

5.1. ASSUMPTIONS

Because the Machadinho reservoir is located immediately upstream of Ita, and
since its usable storage capacity dominates that of Ita, the operation of the MIS
can be considered as a single reservoir problem. Under this assumption, Ita is
operated so as to keep the storage level constant. The single control variable is
thus the monthly release from Machadinho. The inflow to the Ita reservoir in-
cludes the release through the turbines of Machadinho hydropower plant, the spill
from Machadinho, and the inflows from uncontrolled tributaries. There is a strong
correlation between the inflows to the Machadinho reservoir and the uncontrolled
tributaries. Consequently, the state variables are the volume in storage at the be-
ginning of a month in Machadinho reservoir, whereas the hydrologic condition
is represented by the current inflow to the Machadinho reservoir. It is also as-
sumed that the outflow from Machadinho is immediately available to Ita. With
the previous assumptions, the FSDP model for the MIS can be written as follows:
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Table II. Definition of variables and parameters for the FSDP Model for MIS

State variable – Machadinho reservoir

Qt characteristic flows, unit = [106m3];

St characteristic storage volumes, unit = [106m3];

Smin dead storage capacity, unit = [106m3];

Smax maximum storage capacity, unit = [106m3];

Decision variable – Machadinho reservoir

Rt release during month t, units = [106m3];

Rmin minimum release, unit = [106m3];

Rmax maximum turbined release, unit = [106m3];

Fuzzy objectives

µO1,t
(St , Qt , Rt membership function for efficient hydropower generation in month

t – Machadinho reservoir, unit = [–];

µO2,t
(St , Qt , Rt membership function for adequate storage level in month t –

Machadinho reservoir, unit = [–];

µO3,t
(S1,t , Q1,t , R1,t membership function for efficient hydropower generation in month

t – Ita reservoir, unit = [–];

µ∗
Gn−1

(St+1, Qt+1, Rt+1 membership function for suitable future operations, from t+1 to the
end of the planning horizon– entire system, unit = [–];

Aggregation parameters

ω1,t weighting coefficient associated to hydropower – Machadinho
reservoir, unit = [–];

ω2,t weighting coefficient associated to the control of the storage level
– Machadinho reservoir, unit = [–]

ω3,t weighting coefficient associated to hydropower – Ita reservoir, unit
= [–];

ω4,t weighting coefficient associated to future operations – entire sys-
tem, unit = [0-] ;

s optimism index, s ∈ R, unit = [–];

Hydrologic parameters

ρ(.) flow transition probability, unit = [–];

Additional variables and parameters

Lt spillage losses from the Machadinho reservoir, unit = [106 m3];

SI,t target storage volume – Ita reservoir, unit = [106 m3];

QI,t total inflow to the Ita reservoir, unit = [106m3];

RI,t turbined release from the Ita reservoir, unit = [106m3];

RI,max maximum turbined release – Ita reservoir, unit = [106m3];

QU,t inflow from uncontrolled tributaries, unit = [106m3];
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µ∗
Gn

(St , Qt ) = EQt |Ht

[
max

Rt

{
2∑

i=1

ωi,tµOi,t (St , Qt , Rt )
s+

ω3,tµO3,t (Sl,t , Ql,t , Rl,t )
s+

ω4,t


∑

Qt+1

ρ(Qt+1|Qt)µ
∗
Gn−1

(St+1, Qt+1))
s




1/s

 (11)

subject to

max[Rmin, St + Qt − Smax] ≤ Rt ≤ min[Rmax, St + Qt − Smin]
St+1 = St + Qt − Rt − Lt (12)

where

QI,t = Rt + Lt + QU,t (Qt)

RI,t = min[QI,t , RI,max]
Variables and parameters are listed in Table II.

5.2. CONVERGENCE

The FSDP model (11) is run iteratively until it generates steady-state solutions, i.e.
optimal release policy tables and membership functions. The convergence criterion
is evaluated every year in period 1 (January), and consists in checking that the
difference between the current membership function and the membership function
from the previous cycle becomes negligible for all grid points (St , Qt ). In this study,
the FSDP model stops as soon as |µ∗

G,c−1 − µ∗
G,c| ≤ 0.001, where c is the number

of iterations.
Several FSDP models (11) with different values for the optimism index s are

developed and implemented to solve the reservoir operation problem. Note that
the model (11) is run with s ∈[–20,1]. The lower bound is chosen because the
model (11) does not converge for s < –20, whereas the upper bound corresponds
to the traditional (optimistic) averaging operator. It would be inconsistent from a
logical point-of-view to consider s > 1 since the aggregation operator (8) would
become too optimistic, since paying too much attention to the most achieved ob-
jective to the detriment of the least achieved ones. In other words, the aggregation
would then be close to the logical ‘or’, which cannot be retained here for equity
consideration since the decision maker usually wants to satisfy all objectives. The
lack of convergence of the FSDP model when too pessimistic decisions are taken
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Figure 4. Example of membership functions.

(s « 0) results of the so-called Drowning Effect (Dubois et al., 1995; Dubois and
Fortemps, 1999). By devoting significant attention to the least achieved object-
ive, the decision-making becomes independent of the satisfaction degrees of the
other objectives. As the number of iteration n increases, the membership grades
of the Kth objective (the goal) keeps decreasing due to the recursive solution of
(11) and the pessimistic aggregation, which becomes close to the min-operator.
The satisfaction degrees of the first K-1 objectives, the flexible constraints, are
therefore not considered so that the model cannot balance the immediate and the
future consequences.

5.3. ASSESSMENT OF MEMBERSHIP FUNCTIONS AND WEIGHT FACTORS

In the FSDP formulation (9), operating objectives are considered as flexible con-
straints, and mathematically encoded as fuzzy sets. A reliable definition of the
membership functions associated with the operating objectives is a crucial point
since the machinery of fuzzy mathematics directly relies on the membership func-
tions of the fuzzy quantities.

During the high flow season, a portion of the reservoir is dedicated to empti-
ness so that excess inflow can be stored and gradually released at lower rates. In
terms of flexible constraint, the membership function associated to this objective
is constructed so that low storage levels are encouraged, while high levels must
be avoided. Between these two extremes are situations in which medium pool
elevations are tolerated. The opposite behavior is expected during the low flow
season. In the absence of major flooding events, high pool elevations are preferred
during the summer because the efficiency of the hydropower plant increases with
the elevation. In brief, the control of the storage level consists in encouraging low
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Table III. Weight factors

Season Hydropower Storage Control Hydropower Goal

(Machadinho) (Machadinho) (Ita) (MIS)

Low Flow

Nov. – May 0.21 0.09 0.49 0.21

High Flow

Jun. – Oct. 0.06 0.41 0.12 0.41

levels during the wet season, and high levels during the rest of the year. These
membership functions are pictured in Figure 4.

The membership function characterizing ‘efficient’ hydropower generation is
based on the assumption that the satisfaction is proportional to the ratio between
current and maximum allowable production. For example, if Rt is the release through
the turbines of Machadinho hydropower plant, and Ē is the average effective head
of that reservoir, the satisfaction degree is given by:

µo1,t
(.) = RtĒt ε(Rt, St )

RmaxEmaxε(Rmax, Smax
(13)

where ε(.) is the plant efficiency.
Also of particular importance in this study is the determination of the weighting

coefficients þi,t . These coefficients reflect the relative importance of the associated
objective in the decision function. Choo et al. (1999) provide a timely review of
the interpretation of criteria weights in multicriteria decision-making. Here, the
weighting coefficient ωi must be interpreted as the relative importance of the ob-
jective Oi with respect to the overall goal. The question posed to the decision maker
is: ‘Of the two objectives Oi and Oj being compared, which one is considered more
important, and by how many times with respect to the overall goal?’ Weighting
coefficients are assumed to be ‘crisp’ numbers and their determination relies on
Saaty’s method of pairwise comparisons (Saaty, 1980). Two sets of weight factors
are calculated and listed in Table III. The first set is specific to the high flow season.
During that period, the flood control objective plays a major role. Future con-
sequences also receive particular attention in order to preserve the resource so that
future hydropower generation is not compromised. During the low flow season, the
priority shifts to the production of energy from the two hydropower plants because
energy prices tend to increase when the hydrological inputs decrease. The reason is
found in the increasing marginal costs of the hydrothermal electrical system when
thermal plants must substitute hydroelectrical ones.
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Figure 5. Simulated Average Hydropower Generation – Machadinho Hydropower Plant.

6. Simulation of FSDP results

System performance is traditionally estimated from simulation analysis using his-
torical and/or synthetic flows. Here, historical monthly inflows to Machadinho as
well as lateral flows, from 1931 to 1994, are used for simulating the MIS. This 64-
year long time series of monthly flows is assumed representative of the stochastic
process. Simulation results consist of the end-of-the month storage levels in both
reservoirs, the monthly release through the turbines of each plant, the spillage
losses for both reservoirs, and the average monthly hydroelectric production of
each plant. These results are obtained after implementing a reoptimization model
with the continuity equation (12). See appendix 1 for further details on the reoptim-
ization approach in FSDP. Each simulation run starts with initial storages of 3000
million m3 for the Machadinho reservoir and 5000 million m3 for the Ita reservoir.

Figure 5 displays the monthly average simulated hydropower generation for
the Machadinho hydropower plant. These results are given for different indices
of optimism: s∈{1, –1, –4, –8, –12, –16, –20}. It can be seen that the parameter
s has little effect on the average energy production of this reservoir. Due to the
fairly small usable head (about 15% of the total head), seasonal changes in energy
production are more pronounced than those induced by different decision-making
behaviors. Hence, more conservative release polices seem to have little long-term
impact on hydropower generation. Consider, for example, the low flow season. In
hydro-dominated electrical system, it is often beneficial to produce energy during
the low flow season because marginal costs are higher due to the substitution of
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Figure 6. Relative Changes in Energy Production.

hydro by thermal power plants. For this case study, moving from optimistic to
pessimistic decision-making implies that more attention is paid to the objectives
that encourage high storage levels, such as the fuzzy goal and the control of the
storage level in the Machadinho reservoir (see Table III). Higher heads on turbines
therefore compensate the reduction in releases, but also increase the possibilities of
future releases, therefore contributing to a slight improvement in energy production
during this season. For example, when the optimism index s moves from 1 to –4,
the average annual production increases by 2.5% from 6897 to 7073 GWh. Nev-
ertheless, the analysis of the average monthly productions reveals that the relative
positive changes in energy production essentially occur during the low flow season
(from Nov. to May) when energy prices are expected to be higher. This is shown
on Figure 6, which displays the relative changes in energy production when the
optimism index s moves from 1 to –4. The higher production levels observed at the
beginning of the dry season (Nov. – Dec.) when s = 1 result from the adjustment of
the system when moving from aggressive release policies that characterize the wet
season to the more conservative release policies of the dry season. From January to
May, however, hydropower increases by as much as 15% with s = –4 resulting in
increased hydro revenues (by at least 15% depending on the marginal cost-inflow
relationship of this system).

Also of particular importance is the relationship between s, the release Rt ,
and the hydrological regime. As s is getting lower, the policy is expected to be
more conservative, i.e. the release decisions are not too risky. This mechanism
should be accentuated during the low flow season. As a matter of fact, since the
transition probabilities indicate that low flows tend to be followed by low flows, a
pessimistic decision maker should become even more pessimistic under low flow
conditions. Figure 7 displays ‘pessimistic’ releases versus ‘optimistic’ releases for
two different months representative of the two different seasons: the dry (Figure
7a) and the wet (Figure 7b) seasons. For both months, it can be seen that the
interaction between s and Rt is a little bit more complex than expected. In fact,
as long as the release does not exceed some limit, which seems to be around 800
m3/s, the system is indeed more aggressive with s = 1. Note that this is even more
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Figure 7. Illustration of ‘Pessimistic’ versus ‘Optimistic’ Releases for the Two Seasons.

pronounced during the dry season. But, as we can see, this does not become true
under high flow conditions. The reason is that the ‘pessimistic’ policy (s = – 20)
yields high storage levels with little flood control capability. Hence, under high flow
conditions, ‘pessimistic’ releases may be larger than ‘optimistic’ ones because of
the reduced possibility to catch floods.

As we just saw, the s parameter seems to have a major impact on the capability
to capture flood waters during the winter and to maintain high pool level during the
summer. If the decision maker selects too risky release decisions, low storage levels
should be maintained throughout the year. As mentioned earlier, this might not
constitute an interesting strategy during the summer. As a matter of fact, in order
to achieve a certain amount of energy, more water should be released to compensate
the lower head on the turbines. The opposite should be observed with a pessimistic
decision maker. So, when it comes to maintaining adequate storage level, it seems
that the best behavior should lie somewhere between the most pessimistic and the
most optimistic bounds. This is confirmed by the examination of Figure 8, which
presents the monthly evolution of the average satisfaction associated to the storage
level for different values of s.

As we can see from Figure 8, the optimism index s has a major impact on
the average volume in storage and thus on the associated membership grade. It
is also obvious that the conventional averaging operator (s = 1) does not yield to
the ‘best’ strategy for the control of the storage level since the average satisfaction
is the lowest during the dry season, from November to April. Rather, a slightly
more pessimistic behavior, with s∈[–1, –4], generates more acceptable results with
membership grades ranging from 0.6 to 0.8. Note that too pessimistic decisions
have a negative impact on the storage level during the wet season, and are thus
incompatible with a dependable flood control strategy.



EFFECT OF AVERAGING OPERATORS IN FUZZY OPTIMIZATION OF RESERVOIR OPERATION 19

Figure 8. Simulated Average Satisfaction Associated to the Storage Level.

7. Summary and Conclusions

This paper presents a continuous FSDP algorithm to solve multipurpose multireser-
voir operation problems. Operating objectives are represented by fuzzy sets and
aggregated by the generalized averaging operator, whose parameter can be inter-
preted as the decision maker index of optimism. This FSDP model is implemented
to derive optimal operating policies for a hydropower system located in Brazil,
where the main objectives are hydropower generation and flood control. Optimiz-
ation results are then used to simulate the system with a continuous reoptimization
approach.

This study also investigates the different meanings of the generalized averaging
operator and their impacts on long-term performance of a reservoir resource. We
show that the assumption that consists in using the conventional averaging operator,
which corresponds to the generalized averaging operator with s = 1, may not yield
to the ‘best’ performance. This is particularly true for time periods characterized by
the need to preserve the resource. For example, such a need might be encountered
during the dry season when future water deliveries (water supply, irrigation, re-
creation) strongly depend on the current release decisions. During that period,
it is expected that solutions provided by the conventional averaging operator are
inappropriate because they are too risky (optimistic). Rather, the decision maker
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should be more pessimistic, and thus pay more attention to the less effectively
satisfied objectives.
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Appendix I. The Reoptimization Model

There are two approaches for implementing FSDP-derived solutions in actual or
simulated operation, each depends on one of the two sets of solutions obtained from
the FSDP model: either the optimal policy tables or the steady-state membership
functions. The traditional method consists in interpolating directly in the FSDP
tables R∗

t (St , Ht ) given the system’s status (Sy,t , Hy,t), where Hy,t is the current
hydrologic state and Sy,t is the storage at the beginning of time period t (year y).
In the second approach, an optimization model is used to calculate the optimal
release with a continuous objective function obtained from both µ∗

Gt+1
(St+1, Ht+1)

and the system’s status (y,t , Hy,t ). Tejada-Guibert et al. (1993) show that the re-
optimized SDP policy resulted in slightly better performance than the interpolated
policy. In addition, the release tables generated by the FSDP algorithm may show
discontinuities when the decision function is relatively flat. In the reoptimization
approach, the optimal solution does not solely rely on the characteristic values
employed in the FSDP algorithm. Rather, the approach uses continuous FSDP-
derived membership functions and the exact system state to determine the optimal
release:

∑
Ry,t

{µeff

O1,t
(Sy,t , Qy,t , Ry,t
µ

eff

O2,t
(Sy,t , Qy,t , Ry,t
 . . .


µ
eff

OK−1,t (Sy,t , Qy,t , Ry,t)
EHt+1|Hy,t ,Q
tot
y,t

µ
eff

OK ,t (St+1, Ht+1)}
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where
t index of time period;

y index of year;

Sy,t Storage level at the beginning of period t, year y;

Hy,t hydrologic state during period t, year y;

Qy,t vector of inflow to the reservoirs during period t, year y;

Qtot
y,t total inflow to the system, period t, year y;

Ry,t vector of optimal releases during month t, year y;

Ht+1 vector of future characteristic hydrologic states, period t+1;

St+1 vector of future characteristic storage levels, period t+1;

µ
eff

OK ,t = f (µast
Gt+1

(St+1, Ht+1), ωK,t )

The evaluation of the reoptimization model requires the approximation of the dis-
crete membership functions µast

Gt+1
(St+1, Ht+1 by continuous functions. In this study,

the approximation is carried out by cubic splines, i.e. individual multivariate cubic
polynomials defined on each subregion of the state space domain delimited by the
grid points (Johnson et al., 1993).
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